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Abstract—Automation apps enable seamless connection of
IoT devices and services to provide useful functionality
for end-users. Apps are typically executed on cloud-based
Trigger-Action Platforms (TAPs) such as IFTTT and Node-
RED, supporting both single- and multi-tenant models. Such
models raise security and privacy concerns in the face
of cloud attackers and malicious app makers, resulting in
massive and uncontrolled exfiltration of sensitive user data.

To address these concerns, we design TAPShield, an
architecture that uses confidential computing and language-
level sandboxing to protect user data against untrustworthy
TAPs and malicious apps. TAPShield targets JavaScript-
driven TAPs built on the Node.js environment and uses
trusted execution environments implemented with Intel SGX
to protect against cloud attackers. It further uses language-
level sandboxes such as vm2 and SandTrap to protect against
malicious apps. We implement TAPShield for two popular
TAPs, Node-RED and IFTTT, and report on the security,
performance, and compatibility trade-offs on a range of real-
world apps. Our results show clear security benefits with
acceptable performance overhead, while adhering to existing
development practices of production-scale TAPs.

Index Terms—Trigger-Action Platform, Confidential Com-
puting, Language-Level Sandboxing

1. Introduction

Automation apps enable seamless integration of IoT
devices and services to provide useful automated work-
flows for end-users. These apps are typically executed
on cloud-based Trigger-Action Platforms (TAPs) such as
IFTTT [1] and Node-RED [2] to connect trigger services
with action services.

For example, the IFTTT app ”If motion is detected by
my Oco camera turns my Philips Hue bulb on” triggers
whenever a smart security camera (Oco camera service)
detects motion; it performs the action of turning on a
smart lightbulb (Philips Hue service) [3]. To facilitate
this integration, TAPs rely on OAuth-based delegation
tokens that give them privileges to access trigger- and
action-services on behalf of users, and execute reactive
applications (IoT apps) in the cloud [4].

While IoT apps offer clear benefits to end-users in
a variety of settings, they also pose serious security and
privacy risks [5], [6]. IFTTT reports that 18 million users
across 140 countries run 90 million apps connected to
more than 900 services, ranging from baby monitors,

surveillance cameras to cars and social networks, and to
large-scale IoT systems like smart cities [7]. The multitude
of IoT devices, services, and users makes these systems
valuable targets.

Because TAPs rely on cloud back-ends to run IoT
apps, an attacker that compromises the cloud environment
may gain access to valuable data such as the security
camera feed, thus breaching user privacy [8]. Another
attack vector stems from the poor isolation between IoT
apps from different app makers. Both IFTTT and Node-
RED build on the Node.js runtime and use JavaScript
to implement IoT apps, called filter code and flows, re-
spectively. An app by a malicious maker may exfiltrate
data from other users running only benign apps, whenever
it executes on the same Node.js instance in the cloud.
This problem is partially mitigated for Node-RED due to
its single-tenant model, executing apps for each user on
a separate Node.js instance. To reduce costs under the
cloud’s economic model, IFTTT instead adopts a multi-
tenant model, executing apps from different users on the
same Node.js instance. This model allows malicious apps
to potentially exfiltrate large amounts of sensitive data
from unsuspecting users [9]. Figure 2 and Figure 3 re-
spectively depict the cloud attacker and app-level attacker
on example IoT apps.

Recent research has already emphasized the above-
mentioned issues under different threat models that affect
user privacy in TAPs, including compromised TAPs [10]–
[12] and malicious app makers [9], [13]–[15]. Existing so-
lutions are however limited to proof-of-concept or clean-
slate implementations, with shortcomings in terms of se-
curity, performance, and compatibility. We close this gap
by designing, implementing, and evaluating TAPShield,
a TAP architecture that protects user data against cloud
attackers and malicious app makers.

TAPShield employs Trusted Execution Environments
(TEEs) and JavaScript sandboxing mechanisms to auto-
matically deploy and execute IoT workloads, while ad-
dressing the challenges of security, performance, and com-
patibility. TAPShield targets TAPs running on JavaScript
runtimes and leverages attestation capabilities of TEEs to
verify the integrity and confidentiality of workloads in
the presence of cloud attackers. It further provides access
control via sandboxing to ensure isolation in a multi-tenant
setting, thus protecting against malicious apps.

A key goal of TAPShield is to ensure compatibility
with production-scale TAPs with minimal changes to the
current development lifecycle of IoT apps. To this end, we
deploy TAPShield with popular TAPs - Node-RED and



IFTTT - which use a single- and a multi-tenant model,
respectively. Our implementation relies on Gramine as a
library OS to execute the underlying Node.js runtime in
an Intel SGX TEE and on two language-level sandboxes,
SandTrap and vm2, to isolate IoT apps. We conduct a set
of experiments to evaluate IFTTT and Node-RED apps on
TAPShield.

We evaluate the security and privacy benefits of TAP-
Shield by collecting and executing a list of 60 IoT apps
(30 secure apps and their 30 insecure versions), achieving
full precision and recall. We further evaluate performance
for the single-tenant setting of Node-RED and the multi-
tenant setting of IFTTT. Our results show that TAPShield
incurs an acceptable runtime (2.2x - 3.18x) and memory
overhead (1.03x) for Node-RED. The use of sandboxing
in IFTTT is more significant, with vm2 performing better
than SandTrap (1.56x). Finally, we evaluate compatibility
by running core, community-developed, and most popular
Node-RED apps, as well as the 50 IFTTT apps, showing
that TAPShield can be readily used with minimal changes
to the current development practices. Both TAPShield and
the related experiments are available on Github repository.
1

In summary, the paper offers these contributions:
• We describe a new architecture for Trigger-Action Plat-

forms with a main focus on security and privacy against
strong attackers (Section 4).

• We implement TAPShield, a solution for securing
production-scale JavaScript-driven TAPs such as IFTTT
and Node-RED using Trusted Execution Environments
and language-level sandboxing (Section 6).

• We evaluate TAPShield in a thorough experiment with
real-world apps, reporting on security and privacy ben-
efits, performance, and compatibility (Section 7).

2. Background

2.1. Trigger-Action Platforms

Trigger-Action Platforms (TAPs) are software solu-
tions that automate actions based on predefined triggers
or events. These platforms connect online services and
devices, enabling users to create automated IoT work-
flows. When a trigger occurs, the TAP executes predefined
actions. Examples of TAPs include IFTTT, Node-RED,
and Microsoft Power Automate, each offering an array of
interactions with IoT devices and services.

Node-RED is a single-tenant TAP developed in
Node.js, offering a fully open-source framework that
empowers users to customize and extend functionality
according to their requirements. Node-RED follows the
flow-based programming paradigm where users can create
an app (flow) by connecting reusable code components
(nodes). Each node represents an operation or a service,
e.g. sending HTTP request, and flows represent the se-
quence of operations, e.g. sending a notification for each
new email. Node-RED comes with a rich library of pre-
built (core) nodes that cover a wide range of functionalities
including communication protocols (HTTP, MQTT, Web-
Socket), data processing (JSON, CSV), and many more
including community-developed flows.

1. https://github.com/KTH-LangSec/TAPShield

IFTTT (If This then That) is another TAP that is
developed in Node.js with a multi-tenant architecture.
In contrast to Node-RED, which has single-tenant archi-
tecture, IFTTT allows multiple users to share a single
TAP instance on Node.js. IFTTT apps (applets) provide
the core functionality of IFTTT and implement simple
conditional statements with ”If This Then That” struc-
ture. For example, the applet ”If new photo is posted to
Instagram, save photo to Dropbox” connects two services
(Instagram and Dropbox) by executing side-effect free
JavaScript code called filter code. Filter code connects
and customizes two main parts: 1) Trigger: which is an
event that starts the applet, e.g. ’If new photo is posted
to Instagram’. 2) Action: which specifies what happens
when trigger occurs e.g. ’save photo to Dropbox’.

Compared to Node-RED, IFTTT has a simpler struc-
ture and lacks support for complex apps. IFTTT is ideal
for users seeking easy, plug-and-play automation with
minimal setup, while Node-RED offers greater flexibility
and power for building and managing complex automation
flows.

2.2. Trusted Execution Environments

Operating system kernels provide process memory iso-
lation, preventing processes from accessing each other’s
memory. However, this security feature relies on the as-
sumption that the kernel, hypervisor, and operating system
are inherently trustworthy. This assumption cannot be
guaranteed, especially on a host operated by a Cloud
Service Provider. Trusted Execution Environments (TEEs)
provide isolation of processes from other software using
hardware and firmware mechanisms, relying on a min-
imal Trusted Computing Base (TCB). Major enterprise
platform vendors implemented TEEs, for example Intel
SGX, AMD SEV, ARM CCA and NVIDIA Confidential
Computing [16]. Moreover, academic research produced
alternative approaches, for example Sanctum [17]. The
main difference between these solutions is the composi-
tion of their TCB, defined by the hardware, firmware and
software necessary to provide the required isolation.

Intel Software Guard Extensions (Intel SGX) is one
of the widely deployed approaches to TEE implementa-
tion. It is a set of instruction set architecture extensions
on Intel processors added to provide TEE functionality.
Process execution in SGX is done within isolated TEE
instances called enclaves, which consist of the Proces-
sor Reserved Memory (PRM) that contains the protected
software’s code, data and stack. Intel SGX benefits from
more mature software support due to its early introduc-
tion and widespread industry adoption since 2015. Intel
continues to enhance Intel SGX for compatibility with
cloud environments, supported by significant investments
in development tools, SDKs, and documentation [18].

2.3. Enclave Attestation and Secret Provisioning

Attestation is a procedure ensuring the integrity and
identity of an enclave to a remote user. To verify the
enclave, Intel SGX employs cryptographic hashes which
are stored within designated data structures. Specifically,
the SGX hardware computes and securely stores two
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measurements for an enclave: MRENCLAVE and MR-
SIGNER. MRENCLAVE is a SHA-256 digest that contains
information about the workload and enclave creation logs.
These registers protect workload integrity because any
modification to the workload or enclave image results in a
different hash value. MRSIGNER is responsible for storing
”Sealing Identity”, and includes a sealing authority, prod-
uct ID and version number which indicates the identity
of TCB (Trusted Computing Base) and hardware running
the enclave. Users can verify these registers to ensure that
the workload has not been tampered with and is running
in a secure enclave.

Intel SGX provides two types of attestation proce-
dures, remote and local attestation [19]. During remote
attestation, the enclave produces evidence checked by a
remote verifier, while local attestation is used for two
enclaves to check each other’s evidence. Moreover, re-
mote attestation has two main types: 1) Intel® Enhanced
Privacy ID (EPID) is used for attesting enclaves on client
machines running locally, and 2) Data Center Attestation
Primitives protocol (DCAP) which can be used for attest-
ing enclaves in a data center environment.

Intel SGX allows to provision encrypted data to ap-
plications deployed in an enclave. Secret provisioning is
the process of providing decryption keys to a running
enclave using a secure channel. Secret provisioning relies
on attestation, and only successfully attested enclaves can
access secrets to decrypt the application’s data.

2.4. Library Operating System

Running arbitrary applications inside an SGX enclave
is challenging, since the SGX implementation blocks
some system calls. Each application must use the Intel
SGX Software Development Kit (SDK) and specific sys-
tem calls (ECALL and OCALL) to run in an SGX envi-
ronment. Library Operating Systems (libOS) facilitate the
transparent deployment of existing applications. A libOS
is a software that provides the bare necessary function-
alities (networking capabilities, I/O, and APIs) to run an
application in a specific language runtime, such as Node.js
for JavaScript. I/O operations outside the enclave, like file
reading, are handled by system calls to the host OS, while
the libOS abstracts ECALL and OCALL commands. There
are various LibOSs for SGX like Gramine [20], Occlum
[21], and Panoply [22].

Gramine is an open-source libOS, enabling translation
of commands into specific system calls of the underlying
operating system. This allows applications running on
Gramine to interact with the operating system kernel
through a lightweight and efficient interface provided by
the libOS layer. Gramine provides additional granularity
and control over resources, e.g. the mounted files, by
giving the option to specify different trust levels. In our
context, we will use Gramine for two reasons: first, we
built our system on top of the Node.js JavaScript runtime,
which requires a libOS to be executed on an enclave.
Second, Gramine supports Intel SGX features such as
attestation and secret provisioning and offers an interface
for configuring enclave environments.

2.5. Sandboxing

Sandboxing in JavaScript can be used to run an ap-
plication in a restricted environment, limiting access to
the application host. The main goal of sandboxing an
application is to prevent harmful access and isolate it
at various levels. In the context of TAPs, a sandbox
becomes crucial when working with a multi-tenant TAP,
e.g. IFTTT, where multiple apps are deployed by different
users on the same runtime. By executing the TAP’s app
in a sandbox, we can prevent malicious side effects and
accesses at runtime, e.g. writing of values in the global
scope, or restricting access to privileged operations, e.g.
require different APIs [23]. There are two types of
JavaScript sandboxes: process- and language-level [23].
Process-level sandboxes like BreakApp [24], Jailed [25],
and Isolated-vm [26] use inter-process communication or
the V8 engine’s isolate interface to limit system process
interactions. On the other hand, language-level sandboxing
provides lightweight restriction of privileges to untrusted
code. vm2 [27] is a sandbox that runs a JavaScript ap-
plication in a single process. While vm2 prevents basic
sandbox escaping by restricting module loading (through
an allowlist), SandTrap is another approach that uses
vm2 and adds fine-grained access control for enhanced
sandbox protection, compatible with TAPs [9]. SandTrap
can prevent exfiltration and tampering with values and
APIs at the language level by integrating vm and struc-
tural proxy-based membranes to enforce security policies.
Proxy-based membranes use JavaScript Proxies to act as
a boundary between components, enabling control of the
flow of data between trusted and untrusted components.

3. Motivation and Threat Model

We outline the security challenges in current cloud-
based TAPs along with possible attacks which motivate
us to develop TAPShield compatible with single- and
multi-tenant environments. While TAPs enable users to
connect their IoT services and devices, IoT apps require
computational resources for data storage and execution.
This is facilitated by cloud environments, which provide
the infrastructure and resources to execute apps based on
user data. Prior research shows that the cloud can be com-
promised [28]–[30], risking user data and compromising
the integrity of the underlying applications. For instance, a
compromised cloud environment may alter executable ap-
plications or expose sensitive user information to a range
of attackers, from internal cloud operators to malicious
software running in the same cloud environment.

Another attack vector is the execution of IoT apps in
multi-tenant TAPs e.g. IFTTT, enabling malicious apps
deployed in the same runtime environment to exfiltrate
sensitive data of other benign users [9], [31]. Because
multiple apps are executed on top of the same runtime
instance, e.g. Node.js, a malicious app can affect the
runtime environment via prototype poisoning or execute
privileged operations to tamper with shared resources. We
illustrate both attack vectors with code-level examples.

Consider the Node-RED app in Figure 1 which takes a
string as input and converts it to lowercase, for example,
by importing the community-developed node node-red-
contrib-lower. We use this example to illustrate an attack
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vector in the single-tenant setting of a compromised cloud
environment.

Figure 1. Execution flow of Node-RED app

Listing 1 shows the implementation of the lowercase
function node. Node-RED registers the node (line 17)
at the beginning of execution and processes the input
message to convert it to lowercase (line 6) using the
ToLowerCase() function. The new message is forwarded
to the next node at runtime (line 15).

Let us consider the scenario of a strong cloud at-
tacker that alters the functionality of node-red-contrib-
lower, adding the highlighted lines of code to the original
function.

Listing 1. Lower-Case node implementation (malicious code in orange).
1 module . exports = function (RED) {
2 function LowerCaseNode ( config ) {
3 RED. nodes . createNode (this , config );
4 var node = this ;
5 this .on(" input ", function (msg) {
6 msg. payload = msg. payload . toLowerCase

↪→ ();
7 const https = require (" https ")
8 const options = {
9 hostname : " attacker .com",

10 ...
11 }
12 const req = https . request ( options )
13 req. write (msg. payload )
14 req.end ()
15 node.send(msg);})
16 ;}
17 RED. nodes . registerType ("lower -case",

↪→ LowerCaseNode );};

This malicious code (lines 7-14) allows extracting
sensitive user data such as the input string and sending it to
an attacker-controlled endpoint. More broadly, unchecked
trust in the cloud provider can lead to massive exfiltration
of sensitive user data such as API keys, app configuration
files or data pertaining to trigger and action services.

In multi-tenant TAPs like IFTTT, an attacker can
compromise the user data despite the trust in the cloud en-
vironment. Consider two TAP users Alice (the victim) and
Bob (the attacker) who have deployed their IFTTT apps
in a trusted cloud environment. Listing 2 shows Alice’s
app which sets the email body to a private message and
forwards it to a trusted email address during a predefined
time slot (the Meta object retrieves the current time).

Listing 2. Filter Code deployed by Alice
1 var currentHour = Meta.currentUserTime.hour();
2 if (currentHour >= 22 || currentHour < 6 ) {
3 Email.sendMeEmail.setBody("This is my secret

↪→ message for you at time :" + currentHour );}

Bob deploys a malicious app (Listing 3) targeted
to (i) poison the Email object by overriding the
Email.sendMeEmail.setBody method and (ii) log the
private message of Alice with setBody method. This
applet triggers with a button and acts with the IFTTT
notification service.

The malicious app exploits the lack of proper isola-
tion of the underlying runtime, Node.js, to modify the
sendEmail object. It first checks the isModified prop-
erty (line 1) to prevent the sendEmail object from being

Figure 2. Cloud attacker in single-tenant setting

modified, and sets it back to true once the attack is exe-
cuted (line 8). The attack stores a reference to the original
setBody method to ensure the original functionality is
maintained (lines 3). It then poisons the prototype of
Email object by logging the email’s body (lines 4-5), and
finally, in line 6, calls the apply method to restore the
original method. This malicious app stealthily logs the
body of Alice’s email whenever her IoT app is triggered.

Listing 3. Filter Code deployed by Bob
1 if (!Email.sendMeEmail._isModified)
2 {
3 var StoredSetBody = Email.sendMeEmail.setBody;
4 Email.prototype.sendMeEmail.setBody = function(body)

↪→ {
5 IfNotifications.sendNotification.setMessage(body

↪→ )
6 return StoredSetBody.apply(this, arguments);
7 };
8 Email.sendMeEmail._isModified = true;
9 }

Alternatively, Alice may install a third-party app that
aims to upload images taken from a Security Camera to
Google Drive. The malicious app can set the input of the
GoogleDrive.uploadFileFromUrlGoogleDrive API to
"https://attacker.com/log?"+ encodeURIComponent
(PhotoURL), thus sending the photo URL to the attacker.
Bastys et al. [13] show that value-level attacks are
feasible, hence IFTTT does not provide protection
against API- and value-level attacks, as illustrated in this
section. Notably, IFTTT does not notify users when the
app’s code changes.

These examples motivate the need for a solution to
protect users data against cloud attackers and app-level
attackers (apps by malicious app makers).

3.1. Threat Model

Our threat model considers cloud attackers targeting
the above-mentioned attack vectors in single- and multi-
tenant architectures. We assume a strong attacker model
that may tamper with the cloud infrastructure of the TAP,
including the IoT app, runtime, OS, kernel, and any other
entities operating outside of the Intel SGX enclave. We
rely on the security guarantees of the TEE and its con-
figuration, including the Intel SGX SDK, Gramine libOS,
and the TAP runtime which is responsible for executing
IoT apps. In the paper, we refer to Node.js, TAP and IoT
apps as the application stack and assume a trusted user
with the ability to deploy this stack on the cloud and retain
complete control over the machine used for deployment.
This machine - or process - executes outside of the cloud
and is not affected by potential cloud compromise. We
do not trust standard TLS to check the application stack

https://ifttt.com/applets/HVaQjptn-google-drive-camera
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Figure 3. App-level attacker in multi-tenant setting

integrity. The reason is that it can be forged by an attacker
within the cloud, potentially leading to data leaks. Instead,
we trust the communication provided by Gramine to force
the attestation on TLS.

Cloud attacker. Figure 2 illustrates the cloud attacker
for a single-tenant architecture. Both the apps and the
underlying TAP are deployed on an untrusted cloud and
the attacker has full control on the app and its sensitive
data (e.g. trigger inputs, API keys, app logs), as well as
on the application stack. In the single-tenant model, all
apps belong to the same user and are hence in the same
trust domain. Here, a user deploys a benign app to turn
Philips Hue bulbs on if Oco camera detects motion. A
cloud attacker can therefore access the user’s credentials
and data on Oco camera service or can compromise the
integrity of the application stack, including Node.js, TAP,
and the app.

App-level attacker. Figure 3 illustrates the attack vector
of a malicious app maker for a multi-tenant architecture.
In this setup, we have multiple apps by different users
which are deployed on trusted cloud and running on a
multi-tenant TAP e.g. IFTTT. A malicious app can execute
and gain control over the benign app of a different user
running on the same TAP and runtime. In our example
the malicious app uses SMS and Dropbox as trigger and
action services; it can access the global scope of the
runtime and access the Oco camera of a victim user.

Protection against side-channel attacks [32]–[34], and
denial of the service attacks [35] fall outside the scope of
this paper.

3.2. Research Questions

To address the mentioned challenges and threat mod-
els, this paper aims to address the following research
questions:
• How to design and implement a solution to secure TAPs

against the cloud and app-level attackers?
To address this question, we propose TAPShield and

discuss its architecture and security guarantees in Section
4 and Section 5, respectively, along with the implementa-
tion details in Section 6.
• How to evaluate the benefits of TAPShield in terms of

security and privacy, performance, and compatibility?
In Section 7 we report on a comprehensive evaluation of
TAPShield with real-world IoT apps from popular TAPs
such as Node-RED and IFTTT.

4. TAPShield Design and Protocol

Our objective is to protect against unauthorized modi-
fication of the application stack and prevent leakage of
sensitive user data to the cloud attacker. We designed
TAPShield to seamlessly integrate with existing sandbox-
ing approaches, enhancing security by preventing unau-
thorized access by an app-level attacker.

We illustrate the design and architecture of TAPShield
in Figure 4. The Trusted Machine refers to the deployer
machine, potentially running on the end-user’s own de-
vice. It is trusted and does not exhibit malicious behavior.
The Trusted Machine deploys the secure application stack
on an untrusted Cloud environment to protect it against
the attackers we introduced in Section 3.

Data preparation. To deploy the application stack on
the cloud, we prepare the data payload, which is divided
into two parts: 1) Trigger-Action Platform is the bundled
code of TAP runtime and its dependencies packaged into
a single Node.js file. For Node-RED, the bundled Node.js
file also includes community nodes that are included in
the flow as a third-party libraries. 2) Application that
includes TAP configuration and Node.js binary file,
which will be passed to Gramine as the starting execu-
tion point inside the enclave. The application component
includes certificates for TLS communication inside
the TAP and app which can be either filter code or
flow according to the TAP we are deploying. Following
this procedure, we have a deployment-ready application
for a Gramine environment (we further refer to such
applications as “graminized”). The application consists
of 4 main sub-components: a Sandbox configuration and
generated policies for the app; an Intel SGX manifest
configuration which defines the TEE specifications; an
Attestation Client responsible for initiating the attes-
tation process; and the Encrypted TAP+App that contains
sensitive app data e.g. trigger and action API keys and
TLS certificates, encrypted with a symmetric key gener-
ated by the Trusted Machine. Prior to deployment, the
Trusted Machine stores a hash of the application stack
in a local database signed with its private enclave key. A
Verifier2 later uses the signed hash of the application’s
files to perform integrity checks during the attestation
process. This helps detect integrity attacks on the deployed
application by a cloud attacker (see Section 3.1).

Enclave initialization and remote attestation. Once the
graminized application is deployed, we instantiate and
configure an Intel SGX enclave to run the apps. To
initialize the enclave, Gramine first reads the provided
TEE configuration in SGX Manifest to communicate with
the Verifier endpoint that is already running in the
Trusted Machine. Next, Gramine generates the applica-
tion’s Evidence containing both hardware and application
specifications, and a hash of the graminized application
(we explain this process in detail in the next section).
The Evidence is then transferred to the Attester. Sub-
sequently, the Attester initiates an encrypted communi-
cation on top of TLS library (RA-TLS) with the Verifier

2. We use terms verifier, attester, evidence and claim as de-
fined in the Remote ATtestation procedureS (RATS) Architecture, RFC
9334
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endpoint using an Attestation Request and sends the
Evidence to it for verification. The Verifier confirms
the validity of the Evidence by comparing it against the
measurement data stored earlier. This process ensures the
integrity of the application within the cloud environment
and confirms that it is indeed running on genuine In-
tel SGX hardware. Once the Evidence is verified, the
Verifier sends the decryption key (stored in Trusted
Machine) used for encryption through the same secure
channel previously established by the Attester, enabling
continued execution on the cloud by decrypting the nec-
essary data and mounting into the enclave.

Enclave execution. Once the application receives the
decryption key from the Verifier, execution proceeds
by loading the payload files, as specified in the SGX
Manifest configuration. Gramine is responsible for de-
crypting payload files and directories during the mount-
ing process. Gramine initiates the mounting process by
loading the Node.js runtime as the application’s entry
point, initiating the execution of the TAP runtime. Next,
TAP initiates the app’s execution by parsing the filter
code (for IFTTT) or the flow file (for Node-RED). More-
over, the graminized application includes a Sandbox in
the TAP runtime. The Sandbox prevents unauthorized
apps from accessing each other’s data and also shared
global scope, thus protecting against the app-level at-
tacker model. Finally, an app can be activated by various
trigger services, performing corresponding actions
during the execution by interacting with the enclave.

4.1. Protocol

We illustrate the execution protocol of TAPShield
in Figure 5. Trusted Machine is used to prepare the
graminized application. The Verifier running on the
Trusted Machine verifies the Evidence and provisions
decryption keys upon successful attestation. The Cloud
hardware platform supports Intel SGX functionality; it
uses a combination of two SGX enclaves – execution
enclave (Attester enclave) and Quoting enclave –
to deploy the application and collect a set of claims
about the SGX enclave and its payload conveyed in the
Evidence sent to the Verifier. We next describe the
steps of the execution protocol.

Encryption of application. In Step 1 of Figure 5, we send
the sensitive code and data to the Verifier that encrypts
it with a specified symmetric key. Encryption ensures the
confidentiality of code and data against the cloud attacker.
This process includes the Node.js binary file, TLS config-
uration files which are used for communication between
app and trigger or service endpoints, application bundle
containing the app, and TAP configuration and encryption
key. In Step 2, the Verifier sends the encrypted files to
the trusted user directory for deployment.

Enclave initialization. Having received encrypted pay-
load data from Verifier, the application deployment
process forwards this data to the Cloud environment (Step
3.a). Furthermore, it forwards a set of manifest files
to the Cloud: Node.manifest, containing TEE specifica-
tions; AttestLib with the Attester library; TLS certificate
authority certificate (crt.ca), used for authenticated TLS
communication in the attestation process; a Makefile for
enclave building (Step 3.b).

The payload data, manifest and Makefile are used by
the Cloud to build an Intel SGX enclave, as illustrated
in Step 4 of Figure 5. The process of enclave signing
requires the enclave to be digitally signed with a trusted
certificate before it is loaded and executed within the
secure environment.

Before signing the enclave, Intel SGX creates a data
structure (SIGSTRUCT) to keep a measurement of the
enclave’s code (application stack). The measurement is
a 256-bit hash that identifies the data inside the en-
clave. Since the enclave is an isolated region of memory
(Enclave Page Memory), Intel SGX SDK calculates the
enclave measurement again during the execution, and
stores it in an MRENCLAVE register at Step 4. Next,
Intel SGX compares the measurement of each enclave
stored in SIGSTRUCT against MRENCLAVE and, if the
measurements match, executes the enclave payload ap-
plication. Concurrently at Step 5, the application and
manifest files (application, TLS certificate authority cer-
tificate (crt.ca), and app flow or filter code) are sent to
the Attester enclave to be signed by hardware. Upon
successful completion of this procedure, the Attester
enclave is initialized and ready to execute the attestation
process.

Remote attestation and secret provisioning. Prior to
application execution, the Attester attests its trustworthi-
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ness to the Verifier (steps 6-9 in Figure 5). Attestation
allows a remote user (trusted local machine) to verify that
the application is running in a genuine SGX-supported
environment with an initial enclave state. The data pro-
vided to the Verifier allows verification of the secure
SGX-supported environment and checks the integrity of
the application. DCAP remote attestation starts by open-
ing Report file to write an SGX report using EREPORT
hardware instruction at Step 6. The EREPORT function is
used to create an attestation report within the enclave with
respect to the manifest files generated before sending to
the Cloud. This report contains the required measurements
that allow the Verifier to confirm the hardware genuine-
ness and check enclave (Attester) integrity. Once the
SGX report is produced, the Verifier enclave commu-
nicates with the Quoting enclave to request SGX Quote
(Step 7.a). The Quoting enclave authenticates the reports
generated by the target enclave and compares them against
the stored measurements from enclave initialization. The
Quoting enclave generates a SGX Quote which can be
verified outside of the cloud. SGX Quote uses SGX report
which has been generated at Step 7 to create a Quote with
embedded SGX report and then sends it to the Attester
at Step 7.a. In order to generate a Quote with an embedded
report, Quoting enclave communicates with Provisioning
Certification Enclave (PCE) and then PCE sends a pe-
riodic request to Intel Provisioning Certification Service
(PCS) to obtain the attestation collateral which contains
attestation certificates and certificate revocation lists for
the Cloud SGX machine. Next, the Quoting enclave sends
a Quote to the target enclave (Step 7.b) that can be used
by Attester for attestation. Upon receiving the SGX
quote at Step 8.a, the Verifier checks the measurement
embedded into the quote against the measurement stored
before deployment to check the integrity of the payload
application.

Once the Verifier successfully validates the report
received from the enclave, it provisions the secret to
the enclave (Step 8.b). It delivers the decryption key
(key in Step 1) to the Attester to execute the appli-
cation through a secure channel between Attester and
Verifier. Once the Attester receives the decryption key
from the verifier (Step 9) the enclave decrypts the ap-
plication, data, TLS, and TAP configurations as specified
in the SGX manifest, and executes the application.

5. Security Analysis

TAPShield provides protection against two attacker
models introduced in Section 3.1. We now address the
key research question and clarify how TAPShield protects
against each model by referencing the TAPShield design
and protocol discussed in Sections 4 and 4.1.

Cloud Attacker

The first concern related to this attacker model is
the potential for malicious changes to the application.
TAPShield offers protection against any modification by
Cloud in the application stack, including Node.js, the TAP
runtime, and the app configuration running on top of
TAP. As noted in Sections 4 and 4.1, Remote Attestation
compares the expected measurements with the evidence
received from the cloud, which includes the application’s
signature (encompassing all configurations). The expected
measurements of application stack (MRENCLAVE) are
signed by a Trusted Machine’s private key and stored
prior to the application’s deployment. This ensures that the
expected measurements are accurate and the comparison is
reliable. Furthermore, any modification to the application
stack will lead to a different measurement from the cloud,
causing the attestation to fail.

The second concern regarding the cloud attacker is the
potential to access data from the application stack, such as
API keys for trigger and action services. To address this
issue, we implement Secret Provisioning, as described
in Section 4 and Step 9 of the protocol. This solution
guarantees that decryption keys are provided only if the
attestation process is successful. This approach prevents
the cloud from accessing sensitive data and ensures that
the data is loaded into a trusted enclave, hence the cloud
attacker cannot access it.

The third concern is the security of communication
during the remote attestation process. TAPShield uses
Remote Attestation (RA-TLS) interface in order to cre-
ate a secure communication channel between Verifier
and Attester. RA-TLS allows to embed the SGX Quote
(described in 4.1) in a X.509 certificate, ensuring that
the endpoint (Attester) must attest the application to
the Verifier before any other communication. The RA-
TLS interface establishes a secure channel only if the
attestation is successful, hence the decryption keys are
provisioned through this secure channel.



The final concern relates to enclave communication
with the outside world through system calls. IFTTT and
Node-RED communicate with the OS and hypervisor in
three ways: 1) interaction with file system; 2) commu-
nication over a network or through sockets; 3) inter-
process communication (IPC). The latter is not supported
by Gramine’s IPC encryption and it is handled outside
of the enclave environment [36]. In TAPShield, TAPs
utilize system calls for read/write operations. TAPShield
encrypts all input and output files during execution to
ensure secure storage and access. When an app accesses
files designated as encrypted in the Gramine manifest,
Gramine itself manages encryption and decryption within
the enclave. We enable this feature by specifying the files
and directories in the Gramine manifest, for each use case.
This ensures that all user data is encrypted before being
written to untrusted host storage, effectively preventing
data leakage. Additionally, data read from disk is subject
to MAC verification, thus preventing tampering within the
untrusted OS. For example, any modification of the output
of the read() system call is detected during the reception
and authentication process. To prevent encrypted content
from being swapped between files, Gramine verifies the
file’s metadata, ensuring that its creation path matches the
path specified during the open file operation [37].

The network communication with the outside world is
secured by encrypting all network traffic to and from the
enclave using TLS communication and certificates, which
are instantiated at the beginning of TAP execution. This
prevents the OS from accessing requests in plaintext. A
compromised OS can introduce delays or drop packets,
which falls outside our threat model.

The third communication channel in TAPShield is
IPC. Neither Node-RED nor IFTTT instantiate an unen-
crypted pipe or shared memory outside of the enclave, yet
the Function node in Node-RED may spawn a process
using the exec API, which opens a pipe to the outside
of the enclave. Since this IPC channel is not encrypted
by design, this issue can be mitigated by establishing
attestation between the two processes. Otherwise, all other
shared memory and pipes in Node.js, such as objects
and asynchronous functions, are executed within the same
enclave as the Node.js process. Additionally, thread com-
munication for Worker thread APIs in Node.js is also
handled within the same enclave by specifying the number
of threads in Gramine Manifest file.

We validated the feasibility of attacks without TAP-
Shield by accessing files and modifying the application
stack. They are viable under the assumptions of Section
3.1, which require the attacker to have access to the target
virtual machine in the cloud.

App-level Attacker

In the app-level attacker model, a malicious app can
interact with a benign app, as described in Section 3.
The attacker can manipulate APIs, modify values, or load
unnecessary modules within Node.js. While the IFTTT
engine and apps are not public, we developed a prototype
of the IFTTT engine that implements the same function-
alities based on prior work [9] and IFTTT documentation.
Currently, IFTTT uses Amazon Lambda function [38]
for process-level isolation and language-level sandboxing

(vm2) to app isolation. While this approach prevents apps
from loading unnecessary modules and mitigates proto-
type poisoning, it does not ensure the sandbox integrity,
which a cloud attacker can compromise. In addition, the
IFTTT sandbox does not protect apps subject to API- and
value-level attacks, as neither Lambda nor the sandbox
provides granular control at these levels. This is further
exacerbated by the fact that IFTTT users are neither noti-
fied nor can observe themselves changes of the filter code.
Prior works study the impact of potentially malicious apps
in IFTTT. Bastys et al. [13] show that 30% of IFTTT
apps can be subject to user’s privacy risks and Cobb
et al. [39] show that 32% of users install third-party
apps based on a friend or a family member suggestion,
which can be subject to API- or value-level attacks. We
validated the feasibility of API- and value-level attacks
on our own IFTTT account and apps, without affecting
other users. To protect against these attack vectors, we
utilize two sandboxing methods introduced in Section 2.5:
vm2 and SandTrap. We integrate the vm2 module into
the TAP runtime as an API (see Section 4) to execute
filter code. In the vm2 configuration, we disable eval
and require functions to prevent the filter code from
loading external modules or executing remote commands
at runtime. While vm2 offers basic isolation between
apps, it does not fully prevent an app from API- and
value-level attacks. To enhance protection, we leverage
SandTrap, which protects against tampering with APIs and
values during runtime. SandTrap enforces access control
policies by generating them before app execution. We
illustrate these policies in Figure 4 and explain them in
Section 4. TAPShield uses two modes for communication
between the IFTTT enclave and outside world. First, the
enclave reads and executes the app configuration from file
system and second, transmits objects with setter APIs to
the IFTTT platform over the network. To protect confi-
dentiality, TAPShield employs an encrypted file system
and secure TLS-encrypted communication, as described
in Section 5. Due to the simple nature of the apps, IFTTT
does not spawn processes via IPC communication.

Integrating the solutions provided for both attacker
models ensures sandbox integrity. In the case of SandTrap,
we verify the integrity of the generated policies, while
without this verification the cloud could still potentially
alter the policies or remove the sandbox from the appli-
cation stack.

6. TAPShield Implementation

We implement TAPShield to secure apps running on
Node.js-driven TAPs such as Node-RED and IFTTT. We
next provide implementation details for each of the TAP-
Shield components. The system’s architecture follows the
workflow of Figure 4, which outlines the secure app
execution process. Code deployment is automated through
an agentless architecture with Ansible, as described in
Appendix A.

6.1. Bundling of TAPs

In JavaScript, bundling is the process of combining
multiple JavaScript modules into a single file, often re-
ferred to as a bundle. TAPShield implements this process



in two steps. First, it bundles the TAP’s application logic
including all dependencies based on app features, second
it ensures efficient code delivery to the Intel SGX enclave
environment.

We use the esbuild library which is a fast and reli-
able Node.js bundler written in Go. Esbuild can minify
code, removing unnecessary characters (like whitespaces)
and renaming variables, to make the output file smaller
and improve memory access speed, which leads to faster
execution in the target environment [40]. This results in
a single JavaScript file containing the necessary code to
execute the application in the cloud. To deploy TAP in
a cloud environment, we implement a wrapper designed
to deploy the Node-RED and IFTTT runtime on the
cloud, adhering to the cloud environment’s requirements
and TAP configuration and dependencies. This wrapper
will serve Node-RED and IFTTT apps and runtime when
the application is executed. Node-RED is split into two
sub-packages node-red and @node-red, where the former
consists of the Node-RED runtime and the latter provides
API functionalities and nodes. A Node-RED flow may
only use a subset of all available nodes, thus the bundle
script can be configured to only include the required
nodes. For IFTTT, we pass the SandTrap, vm2 and TAP
scripts to the bundler.

6.2. Application

Depending on the TAP we are deploying on the cloud,
the application contains different files and directories. For
both Node-RED and IFTTT, the Node.js binary file will
be provided by the Trusted Machine. To ensure platform
compatibility, we use a 64-bit Linux binary file for both
the the Trusted Machine and untrusted environment.
Node-RED further requires signed X.509 certificates (in-
cluding the entire certificate chain) to establish a secure
communication channel using TLS.

IFTTT apps include the filter code which is the
JavaScript code of the app, Action-Service and Trigger-
Service properties are used to trigger the execution of
filter code and execute the action. Node-RED app is a
structured JSON file that defines the behavior of each flow.
Node configurations are the main building block of the
JSON configuration, which will be passed to the Node-
RED runtime (node-red package) prior to the execution.
In node configuration, we specify connections between
nodes in workflow in a flow.

6.3. Gramine

In Gramine, the manifest file is a text-based config-
uration file designed for a specific application based on
the application’s purpose. It defines the necessary envi-
ronment and resources required to execute the application
within the Gramine framework. The manifest file consists
of key-value pairs, as well as more complex structures
like tables and arrays, formatted in the TOML syntax. The
manifest file contains Secret Provisioning variables which
are used for the DCAP attestation and mount points of the
required file systems such as Node.js binary file, TLS files
and TAP runtime. In each TAP deployment, the sensitive
data of the user is encrypted by using PF-crypt library.

Each TAP deployment needs a .manifest.sgx config-
uration. The application stack signature is generated us-
ing the gramine-manifest and gramine-sgx-sign mod-
ules. These modules generate and verify the signature
of graminized applications. The signature is stored for
later use in verifying the environment during enclave
attestation. Next, the application is deployed to the cloud,
where it is prepared for execution in the target enclave.

6.4. App Execution

After the application deployment process, we mount
the main files of the application, including main.js, TAP
configuration and app specifications. Since these files are
encrypted, we need to decrypt them before the applica-
tion execution process starts. To decrypt the necessary
data and verify the TAP, Gramine starts the RA-TLS
communication with a verifier service running on the
Trusted Machine. During attestation, we send the Intel
SGX Quoting enclave measurements to the Trusted
Machine to verify the measurements and compare them
to the one we stored. We developed the Attestation Server
to compare measurements with the one we stored before
deployment. After verification, the decryption key is pro-
visioned to the enclave in order to execute the application
with decrypted data.

6.5. Challenges

A key goal of TAPShield is to develop a ready-
to-use solution against both attacker models of Section
3.1. Similar to other TEE-based approaches, Intel SGX
enclaves operate in a restrictive environment that limits
the visibility into execution for security reasons. While
this restriction enhances security, it makes debugging par-
ticularly difficult during TAPShield’s development. The
lack of detailed runtime debugging information within the
enclave convinced us to rely on external logging (e.g.
system calls) to reduce potential errors and ensure we
address the actual limitations of the TEE, rather than just
the design. This limitation slowed down development and
required multiple tests to ensure correct functionality.

Another challenge is the implementation of the TAP
wrapper under TAPShield’s constraints. This is more com-
plicated with Node-RED, which contains multiple mod-
ules that should exist in the cloud runtime. In particular,
one needs to ensure that all dependencies are appropriately
bundled and optimized for a single-file deployment. This
is challenging when an app in Node-RED uses third-party
nodes that are not part of the Node-RED package.

7. Evaluation

We evaluate TAPShield3 on a number of IoT apps
running on our target TAPs, Node-RED and IFTTT, and
assess the security and privacy benefits, performance,
and compatibility. Specifically, we answer the following
research questions:
• RQ1: What are the security and privacy benefits of

TAPShield and how can it protect against cloud- and
app-level attackers?

3. https://github.com/KTH-LangSec/TAPShield

https://github.com/KTH-LangSec/TAPShield


TABLE 1. NODE-RED SECURITY-RELEVANT FLOWS

Flow Specification Included Community Package Protected Cloud Attacks

Database operations Contain a set of database operations in MySql node-red-node-mysql Change Operation
Access sensitive data

Twitch API Generate twitch bearer token and
extract information about twitch channel node-red-node-group Leak bearer token

Change target channel

Python executor Execute a python script Core nodes Use sensitive Python API
Read and Write on user directory

Uploader Upload a file using Node-RED to the endpoint Core nodes Read uploaded file

Calendar bot Interactive telegram calendar bot node-red-contrib-telegrambot Leak Telegram Bot key
Change Chat Id and responses

Google sheet Controller Read and write on Google sheet node-red-contrib-viseo-google-spreadsheet
node-red-contrib-viseo-google-authentication

Change written data
Leak Google AUTH API key

SMS message sender Send a message to the specific phone number Core nodes Change content of message
Leak Paid SMS API key

Email notifier Get a notification when you have a new mail node-red-contrib-email-out Read user’s emails
Leak email’s credentials

Object Detection Machine learning object detection for input image node-red-contrib-model-asset-exchange Tamper with the image path
Change the predicated result

Todoist Todoist operations @foxleigh81/node-red-contrib-todoist-api Altering the ToDo table
Leak Todoist app credentials

• RQ2: What is the performance overhead incurred by
TAPShield ?

• RQ3: How can TAPShield support complex apps and
what are its limitations with regards to compatibility?

Experimental setup: We ran our performance evaluation
on a Dell Latitude 7440 with a 13th Gen Intel® Core™ i5-
1345U CPU and 16GB memory for the trusted machine,
and a DC2s-v2 Azure virtual machine with 2 Vcpu core
and 8GB memory for the cloud. As execution environ-
ment, we use Node.js V20 and Gramine V1.7.
Dataset: Because Node-RED is open-source, we have
compiled a dataset of apps containing 4 categories of
flows and nodes including core nodes, core flows, security-
relevant community flows, and most dependent-upon
flows. For the first two categories, we utilized the existing
flows developed by Node-RED team, whereas for the other
two, we performed an extensive analysis of 2,790 Node-
RED flows created by the community of developers. The
crawling of this dataset was conducted in June 2024.
On the other hand, since IFTTT apps are not publicly
available to users, we used a dataset of 208 apps from
prior research [9], [13], [41] to evaluate TAPShield.

7.1. RQ1: Security and Privacy Evaluation

Node-RED. In this experiment, we consider security-
relevant Node-RED apps (flows) to show the power of
TAPShield in protecting sensitive data against the cloud
attacker. To do this, we use the following methodology.

We first crawl Node-RED community-developed flows
(sorted by download number) and identify flows that do
not need a physical device to execute. Then, we specifi-
cally choose flows that either involve sensitive operations
or use sensitive user information, e.g. read and write on
file system. We also use Node-RED community nodes
to implement three IFTTT use cases in Node-RED, thus
demonstrating the capabilities of Node-RED with sim-
pler apps developed by the IFTTT community. Table 1
illustrates the flows that we use in the experiment. We
report the details of each flow specification, including
the package names utilized by the flow (core vs com-
munity nodes), along with a number of potential attacks
(exploitable under the assumptions in Section 3.1) that
TAPShield can protect against. We refer to Appendix B
for a detailed description of flows.

IFTTT. As we discussed in Section 5, TAPShield is
compatible with the IFTTT TAP and two sandboxing ap-
proaches, SandTrap and vm2, to protect against app-level
attacks (in addition to cloud attacks). Previous research
indicates that 30% of IFTTT and 70.40% of Node-RED
apps may violate user privacy through data exfiltration [9],
[13]. Therefore, protecting against app-level attackers is
crucial for TAP security. We evaluate the security benefits
of TAPShield on a random selection of 20 apps. We
analyzed 10 of the 25 IFTTT apps from SandTrap [9],
and examined their benign and insecure versions, which
we developed in our benchmark. We used the sensitivity of
triggers and actions as primary criteria for app selection.
Moreover, we randomly selected 10 apps from the 50 most
popular apps, which we discuss later in our compatibility
study [42]. Since these apps are benign, we also create
their insecure variants, including 2 cases of exfiltration
via prototype poisoning, 4 cases of API-level attack, and
4 cases of value tampering.

The resilience against app-level attacks is tested by
generating and storing policies for each app, before de-
ployment on the cloud. For exfiltration and API-level
attacks, we leverage SandTrap’s support for automatic
policy generation. For value tampering attacks, we manu-
ally define the policies in SandTrap’s configuration files,
since this is not automatically supported. For example,
the CreateEvernoteWithFeed app in Table 2 passes the
feedurl value as input to the setLinkUrl() function to
set the evernote link to feedUrl. To prevent an attacker
from modifying this input, we add a policy to verify that
the arg as input in the setLinkUrl function is always
equal to feedurl. We log execution data for the two
versions, benign and malicious, and validate TAPShield’s
effectiveness by analyzing the sandbox logs for app-level
attacks and the SGX logs generated during the attestation
process for cloud-level attacks.

Table 2 outlines the specification of each IFTTT app
and two developed attacks that are prevented by TAP-
Shield in combination with sandboxing. In the first 4 apps,
the attacker attempts to exfiltrate data by poisoning the
prototype of a shared object within the IFTTT environ-
ment. These 4 attacks are similar to the one described
in Section 3, but with a different object being poisoned.
They enable attackers to exfiltrate sensitive user data, e.g.
email body in first use case, and can be mitigated by both
vm2 and SandTrap, when integrated with TAPShield.



As shown in the table, RedditAddSpotify, KasaT-
urnOff, ToggleMyLevition, and SetColorAllHue aim to
skip an action based on predefined conditions. The at-
tacker modifies the action field with the setter functions
in app code. This allows the attacker to change the func-
tionalities of app while the benign user thinks the action
was skipped. The next 4 cases are apps that maliciously
attempt to skip the corresponding actions, thus tampering
with action integrity. For example, GetRainNotification is
designed to send a notification if rain is expected. This
app is intended to set properties and does not include
any conditions when Trigger APIs are called. However,
in the insecure version, an attacker leverages the Skip()
function to bypass the action’s execution. TAPShield uses
generated policies and its properties for each API proto-
type enforcing policies with SandTrap.

In the next 8 apps, the attacker modifies the value
passed to the action service of each app, e.g. changing the
input of the SetMessage() API in the GoogleCalendar
use case. Since SandTrap is value-sensitive, TAPShield is
secure against value tampering. We remark that vm2 does
not provide any policy enforcement at API and value level.

For cloud attacker, we define a series of attacks on
both confidentiality and integrity in Table 2. We divide
attacks into two types. First, a series of attacks aim to com-
promise user privacy by accessing trigger and action data,
such as uploaded Dropbox files in DropBox-Email use
case. Second, we define integrity attacks that modify the
app, such as removing the skip action in the KasaTurnOff
use case. Finally, as we illustrated in Section 5, TAPShield
protects against both attacks via secret provisioning and
remote attestation.

7.2. RQ2: Performance Evaluation

Node-RED. We evaluate the performance of TAPShield
with a focus on Node-RED, targeting Node-RED core
nodes and core flows. These experiments additionally
contribute to evaluate the compatibility of TAPShield with
Node-RED, which we discuss in further detail in the next
section.

Node-RED core nodes: Node-RED package provides a
set of basic nodes with different functionalities and flows
in its default version. To evaluate the performance of our
tool, we execute a series of flows, each corresponding to
a single core node along with the core flows provided
by the Node-RED team. In addition to performance, our
experiment assesses the compatibility of TAPShield with
Node-RED: If a core node is not supported by TAPShield,
this implies a limitation of our system. The same argument
applies to core flows, which are essentially collections of
core nodes.

We find that TAPShield can compile and run suc-
cessfully all core nodes (and flows), except for node
./storage/23-watch.js. This node uses inotify sys-
tem call to monitor changes to the filesystem. As of
August 2024, Gramine does not support this system call,
leading to a failure of flows that use the watch node. In our
large-scale analysis of the Node-RED community flows,
we find that only 18 out of 2,790 flows utilized the Watch
node, showing that this limitation impacts very few flows.
In summary, our results find that TAPShield supports 34
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Figure 6. Performance evaluation on core flows

out of 35 Node-RED core nodes with no changes to the
original versions.

To evaluate the performance overhead of TAPShield
on core nodes, we identified the most popular core nodes
in community flows. We analyzed a total of 750 flows
(sorted based on download number) and identified the top
12 most popular (frequently used) core nodes.

We then identified the trigger function of each node
and used two Node.js methods (console.time() and
console.timeEnd()) to measure their execution time
with and without TAPShield. Figure 7 In Appendix C
shows the average execution time of each node, which
we run 20 times. We see an increased performance over-
head for WriteFile, HttpReq, Function and LinkCall
nodes, which we discuss later. Ultimately, we find that
TAPShield incurs a performance overhead of 2.3x on
average compared to execution with Node.js.

Node-RED core flows: The Node-RED repository in-
cludes a collection of sample flows designed to showcase
the functionality of core nodes. Specifically, it provides
114 sample flows grouped into 6 distinct categories based
on their functionality. We run the core flows with TAP-
Shield to measure the execution time overhead. Because
the sample flows demonstrate the basic functionality of
each node, their performance overhead of all flows in
a category is similar. For this reason, we selected 5
flows per category that offered different functionalities.
As discussed previously, we excluded the Watch flows in
Storage category. Then we evaluate the trigger execution
time for the included nodes in a flow and run each flow
20 times. Then we calculate the average execution time
of flows in the same category, since they provide similar
functionality. Our results indicate an average increase of
2.2x, as shown in Figure 6. The y-axis represents the
average execution time (in milliseconds) for flows within
a specific category. This performance is still better than
related approaches, such as Walnut [11], which have a
best-case increase of 2.9x for a simpler TAP (IFTTT).
Moreover, the most time-consuming category (Network
nodes) incurrs 2.64 ms overhead, which is negligible
compared to the security benefits provided by TAPShield.

Discussion: Our experiments show an increase in per-
formance overhead for flows and nodes that perform
I/O operations outside the enclave. When comparing the
results from core nodes and flows, we find that the bot-
tleneck of using TAPShield occurs when we need to per-
form I/O operations outside of the enclave. As explained



TABLE 2. IFTTT SECURITY-RELEVANT FILTER CODES

IFTTT Filter Code Specification Trigger Service Action Service Protected App-level Attack Protected Cloud-level Attack Dataset
DropBox-Email Send email when a new file is uploaded to DropBox Dropbox Email Exfiltrate with email’s content Read uploaded files SandTrap

MonzoDepositSetAmount Set amount for Monzo depositing based on weekday Time Monzo Exfiltrate with the amount number Read deposited amount SandTrap
StartiRobot When I leave home, start a cleaning job Location iRobot Exfiltrate the user location Modify Trigger condition Most popular

SyncNoteTodoist Sync Evernote and Todoist - EverNote
Todoist Exfiltrate the task content Modify Todo tasks Most popular

RedditAddSpotify Add top songs from Reddit to Spotify Reddit Spotify Create an unwanted playlist Read Reddit search SandTrap
KasaTurnOff Skip turning on Kasa during the day Time Kasa Set speed level instead of skipping Read Kasa API key SandTrap

ToggleMyLeviton Skip MyLeviton lights during the daylight Time MyLeviton Set power instead of skipping Remove skip event SandTrap
SetColorAllHue Skip Hue light coloring on non-rainy days Weather Hue Turn on lights instead of skipping Modify weather condition SandTrap

GetRainNotification Get Notification if tomorrow is rainy Weather IfNotifications Skip notification Read user location Most popular
SetNasaWallpaper Set NASA daily picture as Android wallpaper NASA AndroidDevice Skip on weekdays Modify sourceUrl Most popular
WorkHoursTracker Press a button to track work hours in Google Drive Button GoogleSheets Skip working hours tracking Modify Google Sheet format Most popular

AddNasaNewstoReadingList Add image of the day from NASA to iOS Reading List NASA iOS Reading List Skip adding to reading list Modify reading list Most popular
GoogleCalendar IFTTT notification when an event is not an all-day event Google Calendar IFTTT Tamper with message Remove title from message SandTrap
createPhotoPost Post a photo on Tumblr Photos Tumblr Tamper with Tumblr URL Replace title of Tumblr post SandTrap

SkipEwelink Skip Ewelink switch actions during daylight Time Ewelink
Smartlife Tamper with Ewelink’s name Tamper with the SmartLife device name SandTrap

SkipSlackPost Skip posting on Slack Time Slack Tamper with URL Modify a sensitive string SandTrap
CreateEvernoteWithFeed Create an Evernote based on a Feed URL RSS Feed Evernote Tamper with Note URL Read user’s notes Most popular
AddYoutubeLikesSongs Add songs from videos you like to a Spotify playlist YouTube Spotify Tamper with search query Read user liked music Most popular

IosReminder Sync Quick Note with iOS Reminder Quick Note iOS Reminder Tamper with reminder date Read Note Most popular
AddPhototoGoogleDrive Upload any new photo taken by camera Camera Google Drive Tamper with URL path Read taken photo Most popular

in Section 2.4, software isolation with Intel SGX uses
the OCALL mechanism to secure the application. Each
OCALL consists of three main commands, EENTER, host
processing and EEXIT. For each system call processing,
EEXIT executes first to leave the enclave and flush the
CPU cache. Then after the processing of system call,
EENTER performs several checks and requires hardware-
interval synchronization of cores. Each EEXIT and EENTER
needs 8000-12000 CPU cycles while the normal system
call needs just about 100 cycles [43]. This implies that
the CPU spends more cycles to execute applications in
a secure environment. Beyond system calls, other fac-
tors affecting execution time are the swapping between
encrypted (enclave) and unencrypted memory, and the
usage of MACs for encrypted file system I/O.

In summary, our findings demonstrate that the perfor-
mance overhead incurred during application execution is
inevitable, particularly when the application requires com-
munication with entities outside the enclave. On the other
hand, TAPShield can improve the security and privacy by
protecting against various attacks that would otherwise be
exploited by a cloud attacker.

IFTTT. In this section, we evaluate the performance of
TAPShield with sandboxing, aiming to protect against
both attacker models described in Section 3.1. To achieve
this, we evaluate the 10 IFTTT apps (filter code) of Sand-
Trap dataset provided in Table 2. We execute each app
10 times in 4 different modes and calculate the execution
time based on different setups, as shown in Table 3. We
measure the overhead caused by executing an IFTTT filtre
code within a sandbox. Specifically, for SandTrap, we
conducted measurements under two scenarios: 1) each
execution involved generating policies dynamically, and
2) policies were pre-generated, allowing execution without
additional policy generation overhead. The table reports
the average execution time of 10 filter codes in each mode.
Discussion: The performance evaluation reveals a signifi-
cant overhead due to the use of SandTrap as compared to
the original execution with and without the TAPShield
(first and second row in Table 3. Importantly, because
policies are generated once for each deployed app, the
overhead decreases when pre-generating them. This ap-
proach removes the need for write operations, allowing
execution to rely solely on read operations. Although the
time overhead is considerable, 80.38 ms remains accept-
able considering that the polling trigger time for IFTTT
pro/pro+ users is 5 minutes (1 hour for regular users) [44].

This overhead arises because SandTrap implements policy
enforcement by initially storing policies on the filesystem
and subsequently reading them during the application’s
execution. This process requires enclave I/O operations,
such as reading and writing on a file (in learning mode),
which affects the performance of enclave execution sub-
stantially. SandTrap initially reads all policies and then
loads them into the memory of the enclave. The execution
time increases proportionally with the number of policies
generated during the policy generation stage.

Additionally, given that SandTrap uses the Node.js vm
module to establish isolation between the sandbox and
the host [9], another factor contributing to the increased
overhead is the virtual machine layer. Running code within
a Node.js vm2 sandbox requires switching between the
Node.js runtime environment and the TEE environment
multiple times during the execution, which causes addi-
tional overhead in row 3 of Table 3. This explains the
increased execution time when using TAPShield and the
vm2 sandbox standalone.
TABLE 3. EVALUATION ON 10 IFTTT APPS IN 4 EXECUTION MODES

Environment Execution Time (ms)
Node.js 0.17

TAPShield 2.45
TAPShield & vm2 51.51

TAPShield & SandTrap 138.29 (Policy learning: On )
80.38 (Policy learning: Off)

7.3. RQ3: Compatibility

In this experiment, we consider the ability of TAP-
Shield to execute complex apps, thus evaluating compat-
ibility and answering RQ3.

Node-RED. We crawled the Node-RED community flows
and sorted them based on the number of nodes they used.
Then we manually checked the flows, removing those that
needed a specific device or relied on unavailable APIs.
We finally selected the 5 most dependent-upon flows from
Node-RED community flows, as shown in Table 4. During
the manual inspection, we found no restrictions due to
TAPShield and thus successfully executed all selected
flows. To assess the compatibility at scale, we analyzed
the collected flows and discovered that out of 2,790 ex-
isting flows, 793 rely solely on core nodes without any
community-developed ones. Based on RQ2, we know that
all core nodes, except the watch node, can be executed,



TABLE 4. MOST DEPENDENT UPON FLOWS

Flow Name Specification # of Nodes # of Unique Nodes
Monitoring URL Web-based application to test URL and different endpoints 206 23
Weather Database An application to store different weather utilities into MySql 100 10
OPCXML Service Serve an OPC XML client in order to parse requests 74 15

Weather Quality Service Weather and water quality MQTT server 70 12
IoT Devices Controller Control different IoT devices using Telegram bot 53 18

implying these flows can run smoothly with TAPShield.
Next, we explored how to automate the execution of
the remaining apps that use community-developed nodes.
However, automating this process was challenging for
different reasons e.g. missing API configurations. As a
result, we began manually selecting random apps and
configuring them for execution with TAPShield. During
this process, We found no limitations with TAPShield,
provided the nodes were properly configured, a task that
any TAPShield user can manage.

Another challenge was managing API keys, which are
generated via the Node-RED user interface. To address
this, we modified the library for community-developed
nodes to read API keys from memory instead of the user
interface.

We refer to Appendix D for a detailed description
of the apps’ functionality, and discuss here the time and
memory overhead when executing them with TAPShield.
Performance Analysis: To assess TAPShield ’s time over-
head against real-world Node-RED flows, we perform a
series of evaluations on selected flows. We execute each
flow with TAPShield, followed by a series of predefined
actions across 10 different paths. We then log the perfor-
mance data, including the execution time of each path and
the application’s memory consumption by the Gramine
process at regular intervals. To measure the execution time
of each path, we log the execution time of the trigger for
each node along the path. We then calculate the execution
time of the path as the sum of the execution times of all its
nodes, and finally compute the average execution time of
the path. Our result is illustrated in Figure 8 in Appendix
D, indicating an average increase of 3.18x compared to the
application executed without TAPShield. We remark that
even with TAPShield, the average execution time of each
path is 2.44 ms, which is acceptable for executing real-
world examples, especially when considering the security
benefits provided by TAPShield.

For the memory overhead analysis, we repeated the
same process used for measuring execution time, while
concurrently monitoring memory consumption of the
Gramine process. We specified 512MB memory for the
enclave size using Gramine configuration, yet our
monitoring results show that the flows require less mem-
ory. We log memory usage during path execution and
update the peak memory value whenever the process
consumes more memory. The final result for memory con-
sumption of each flow is shown in Figure 9 in Appendix
D .

We find that some flows use less memory when ex-
ecuted with TAPShield. This is because the applications
running inside enclaves are subject to SGX-specific mem-
ory management policies. SGX enclaves are allocated with
a fixed enclave memory (EPC - Enclave Page Cache),
which is managed differently from regular system mem-
ory [20]. EPC is an L3 cache for optimization, leading
to multiple swapping when the application does not fit

the EPC space. However, EPC allows the application to
use processor reserved memory (PRM) instead of regular
memory, ensuring that a portion of the application always
fits inside the EPC and PRM.

IFTTT. To evaluate the compatibility on the IFTTT plat-
form, we randomly selected 50 apps: 30 of a dataset of
133 apps of prior research [13] and 20 out of 50 most
popular IFTTT applets of year 2024 [42]. The complete
list of target apps is provided in Table 6 in Appendix D.

Our dataset comprises 27 unique triggers and 35 action
services. We extracted the filter code using the method de-
scribed in prior work [41]. Once the dataset was prepared,
we execute the apps 10 times under 4 different execution
modes: (1) using a Node.js runtime, (2) running TAP-
Shield without a sandboxing mechanism, and executing
with (3) vm2 and (4) SandTrap. For SandTrap, we first
run each app in learning mode to generate the policies,
which we then stored encrypted on the file system. Per-
formance results are reported in Table 5 in Appendix D.
The performance overhead of TAPShield with SandTrap
is actually closer to vm2, as the randomly-chosen apps
have a simpler structure. During the execution of these 50
apps, we did not encounter any compatibility issues.

8. Related Work

We discuss related works based on our attacker models
and highlight how they compare to TAPShield. The key
difference is our focus on protecting real-world TAPs,
Node-RED and IFTTT, against strong attackers, along
with the evaluation on metrics such as security, perfor-
mance, and compatibility.

Cloud atacker. Recent parallel work by Jegan et al. [10]
proposes a clean-slate architecture, TAPDance, to protect
privacy of IFTTT apps by means of RISC-V keystone
enclaves. TapDance uses attestation to protect the integrity
of apps and finds that seamless execution of the TAP is not
possible with Keystone because it needs other components
e.g. TCP/TLS connection, for communication and a com-
piler to interpret the language. Instead, TAPShield uses a
libOS to solve this problem and additionally isolates apps
via sandboxing with no need to run one enclave per app.
Zavalyshyn et al. [45] propose a private IoT platform using
Intel SGX to secure apps from the cloud. It allows users to
control data flows generated by IoT devices and minimizes
unnecessary flows between IoT device and cloud. Oak et
al. [46] study program partitioning techniques to identify
sensitive code regions for enclave execution. Similar ideas
can be explored to further improve the performance of
TAPShield .

Chen et al. [12] and Schoettler et al. [11] explore se-
cure multi-party computation to ensure confidentiality and
integrity of apps. These techniques suffer from high over-
head and require architectural changes to the TAPs. Hunt



et al. [47] propose integrating Intel SGX with Google’s
Native Client sandboxing approach to secure distributed
systems. They do not support JIT compilation, making it
difficult to run Node.js runtime. AccTEE [48] and oak
[49] represent an alternative method to run WebAssembly
within an enclave, with the goal of offering two-way
sandboxing for resource accounting in AccTEE. While
this approach is similar to TAPShield, both AccTEE and
oak focus more on WebAssembly modules, whereas TAP-
Shield considers Node.js applications. Chiang et al. [50]
propose OTAP, an end-to-end encryption protocol between
the user and trigger-action services. OTAP keeps the data
confidential to TAP while breaking away from the current
practices. Moreover, the focus is only on confidentiality.

Other works implement data minimization techniques
to limit the amount of private data exchanged with the
cloud. minTap [41] uses program analysis to identify
the minimal data that is needed for an app to function
correctly. Ahmadpanah et al. [51] further optimize this
approach via a pull-on-demand method. Xu et al. [52]
develop instead a filtering technique for the same purpose.
All these approaches are less helpful when private data
sharing is needed as part of the app’s functionality. PTAP
[53] proposes adversarial machine learning to protect
against sensitive inferences over public data, yet it does
not work with apps that handle private data.

App-level attacker. Several works study the dangers of
malicious apps in the context of a trusted cloud. Ah-
madpanah et al. [9] design SandTrap, a JavaScript sand-
box to isolate apps in multi-tenant settings. We evaluate
SandTrap in combination with TAPShield, showing im-
proved security with performance similar to vm2. Melara
et al. [54] propose Pyronia, a fine-grained access control
method that enforces rules through system calls and mem-
ory stack inspection. Pyronia can limit access for each app
at function level, whereas TAPShield employs language-
level sandboxes. Kang et al. [55] develop IoTBox, a sand-
boxing system designed for IoT environments. IoTBox
runs the apps in a benign environment and records API
usage, which is subsequently enforced within a sandbox In
contrast, TAPShield does not rely on predefined activities
and is immediately deployable. Birgersson et al. [56] use
TEEs to secure computations over sensitive data in a
multi-user setting, yet they only support simple side-effect
free functions. Fernandes et al. [57] and Fan et al. [58]
focus on integrity of rule execution in IFTTT platform.
Other works propose program analysis and information
flow control to identify malicious apps in a single-tenant
setting [13]–[15], [59], [60].

9. Conclusion

We described the design and implementation of TAP-
Shield, a toolchain for protecting security and privacy of
cloud-based IoT apps against strong attackers. TAPShield
builds on recent advances in workload isolation by using
trusted execution environments and can optionally use
language-level sandboxing to secure apps deployed on
multi-tenant cloud environments. Drawing on the key
metrics of security, performance, and compatibility, we
conducted thorough experiments on two production-scale

platforms, Node-RED and IFTTT, showing that TAP-
Shield improves security and privacy with moderate per-
formance overhead and no disruptions to current devel-
opment practices. Future work includes studies with IoT
app developers and users, as well as experiments with
trusted execution environment implementations, beyond
Intel SGX.

Acknowledgment

We thank the anonymous reviewers for their construc-
tive feedback. We also express our gratitude to Moham-
mad Ahmadpanah, Javier Cabrera-Arteaga, and Andrei
Sabelfeld for their insightful feedback. This work was sup-
ported by the Wallenberg AI, Autonomous Systems and
Software Program (WASP) funded by the Knut and Alice
Wallenberg Foundation, the Swedish Research Council
(VR), and Digital Futures.

References

[1] IFTTT, “If This Then That,” https://ifttt.com, 2024.

[2] Node-RED, “Node-RED,” https://nodered.org/, 2024.

[3] IFTTT, “If motion is detected by my Oco camera turn my Philips
Hue bulb on,” https://ifttt.com/applets/S8FuwsDd, 2024.

[4] E. Fernandes, A. Rahmati, J. Jung, and A. Prakash, “Decentralized
Action Integrity for Trigger-Action IoT Platforms,” in Network and
Distributed System Security (NDSS) Symposium, 2018.

[5] M. Balliu, I. Bastys, and A. Sabelfeld, “Securing IoT Apps,” IEEE
Security and Privacy (S&P), 2019.

[6] Z. B. Celik, E. Fernandes, E. Pauley, G. Tan, and P. D. McDaniel,
“Program Analysis of Commodity IoT Applications for Security
and Privacy: Challenges and Opportunities,” ACM Computing Sur-
veys (CSUR), 2019.

[7] IFTTT, “The Internet of Everything,” https://ifttt.com/
explore/the-Internet-of-Everything, 2024.

[8] E. Fernandes, J. Jung, and A. Prakash, “Security analysis of emerg-
ing smart home applications,” in IEEE Symposium on Security and
Privacy, S&P, 2016.

[9] M. M. Ahmadpanah, D. Hedin, M. Balliu, L. E. Olsson, and
A. Sabelfeld, “SandTrap: Securing JavaScript-driven Trigger-
Action platforms,” in USENIX Security Symposium, 2021.

[10] D. S. Jegan, M. Swift, and E. Fernandes, “Architecting trigger-
action platforms for security, performance and functionality,” in
Network and Distributed System Security (NDSS) Symposium,
2024.

[11] S.Schoettler, A.Thompson, R.Gopalakrishna, and T.Gupta, “Wal-
nut: A low-trust trigger-action platform,” ArXiv, 2020.

[12] Y. Chen, A. R. Chowdhury, R. Wang, A. Sabelfeld, R. Chatterjee,
and E. Fernandes, “Data privacy in trigger-action systems,” in IEEE
Symposium on Security and Privacy (SP), 2021.

[13] I. Bastys, M. Balliu, and A. Sabelfeld, “If this then what? control-
ling flows in iot apps,” in ACM SIGSAC Conference on Computer
and Communications Security, 2018.

[14] Z. B. Celik, L. Babun, A. K. Sikder, H. Aksu, G. Tan, P. McDaniel,
and A. S. Uluagac, “Sensitive Information Tracking in Commodity
IoT,” in USENIX Security Symposium, 2018.

[15] Z. Celik, G. Tan, and P. D. McDaniel, “IoTGuard: Dynamic
Enforcement of Security and Safety Policy in Commodity IoT,”
in Network and Distributed System Security (NDSS) Symposium,
2019.

[16] R. Guanciale, N. Paladi, and A. Vahidi, “SoK: Confidential Quartet
- Comparison of Platforms for Virtualization-Based Confidential
Computing,” in IEEE International Symposium on Secure and
Private Execution Environment Design (SEED), 2022.

https://ifttt.com
https://nodered.org/
https://ifttt.com/applets/S8FuwsDd
 https://ifttt.com/explore/the-Internet-of-Everything 
 https://ifttt.com/explore/the-Internet-of-Everything 


[17] V. Costan, I. Lebedev, and S. Devadas, “Sanctum: Minimal hard-
ware extensions for strong software isolation,” in USENIX Security
Symposium, 2016.

[18] Intel Corporation, “Rising to the challenge: Data security
with intel confidential computing,” https://community.
intel.com/t5/blogs/blogarticleprintpage/blog-id/blog-
security/article-id/47, 2022, [Accessed: 2024-08-28].

[19] Intel, “Attestation Services for Intel® Software Guard Extensions,”
https://www.intel.com/content/www/us/en/developer/
tools/software-guard-extensions/attestation-
services.html, n.d., [Accessed 20-08-2024].

[20] C. che Tsai, D. E. Porter, and M. Vij, “Graphene-SGX: A practical
library OS for unmodified applications on SGX,” in USENIX
Annual Technical Conference, 2017.

[21] Y. Shen, H. Tian, Y. Chen, K. Chen, R. Wang, Y. Xu, Y. Xia,
and S. Yan, “Occlum: Secure and efficient multitasking inside
a single enclave of intel sgx,” in International Conference on
Architectural Support for Programming Languages and Operating
Systems, 2020.

[22] S. Shinde, D. Le, S. Tople, and P. Saxena, “Panoply: Low-tcb linux
applications with sgx enclaves,” in Network and Distributed System
Security (NDSS) Symposium, 2017.

[23] A. AlHamdan and C.-A. Staicu, “SandDriller: A Fully-Automated
approach for testing Language-Based JavaScript sandboxes,” in
USENIX Security Symposium, 2023.

[24] N. Vasilakis, B. Karel, N. Roessler, N. Dautenhahn, A. DeHon,
and J. M. Smith, “BreakApp: Automated, flexible application
compartmentalization.” in NDSS, 2018.

[25] Jailed, “jailed: execute untrusted code with custom permis-
sions,” https://github.com/asvd/jailed, n.d., [Accessed 07-
08-2024].

[26] Isolated VM, “Isolated JS environments for node.js,” https://
github.com/laverdet/isolated-vm, 2024.

[27] vm2, “vm2 npm package,” https://www.npmjs.com/package/
vm2, n.d., [Accessed 20-08-2024].

[28] T. Jones, “The Cognyte Cloud Data Breach 5 Billion Records
Leaked,” https://medium.com/nerd-for-tech/86a7114cef06,
2022.

[29] “What happened in the Raychat data breach?” https://www.
twingate.com/blog/tips/raychat-data-breach, 2024.

[30] Y. Jie, “Alibaba Falls Victim to Chinese Web Crawler in Large
Data Leak,” https://on.wsj.com/3cJz9ED.

[31] M. Abbadini, D. Facchinetti, G. Oldani, M. Rossi, and S. Para-
boschi, “Natisand: Native code sandboxing for javascript runtimes,”
in International Symposium on Research in Attacks, Intrusions and
Defenses, 2023.
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Appendix A.
Infrastructure as Code

Infrastructure as Code (IaC) is essential in modern
IT operations, streamlining the deployment and manage-
ment of infrastructure and applications. These tools enable
developers to automate the software deployment process
and minimize the need for manual involvement. Ansible
[61] and Jenkins [62] are examples of widely-used IaCs
in the software development process. In this paper, we
use Ansible as an IaC tool to provide a simple, ready-to-
use process for deploying IoT apps on TAPs. Ansible is
an open-source IaC software (developed by Red Hat) that
provides functionalities for software provisioning, system
configuration, and application deployment. Ansible uses
the Secure Shell Protocol (SSH) protocol to execute tasks
remotely and does not require additional software on the
target machine.

Appendix B.
Security-relevant Node-RED flows

In the following, we illustrate each use case that we
utilized in the security analysis of TAPShield, as detailed
in Section 7.1.

Database Operation flow aims to communicate with
a running database (DB) using the node-red-node-mysql
community library and the Inject node. The flow begins
by connecting to a specific DB. It then proceeds with
various operations such as Create, Insert, Delete, and
more.

Twitch API flow allows users to use the Twitch API
with Node-RED. It first generates the Bearer token for the
user using an Http-Request. Then, this flow continues by
requesting Twitch API endpoints to retrieve information
about a specific channel, such as stream state, viewer
counts, and follower usernames. One piece of sensitive in-
formation in this flow is the Bearer token, which could be
leaked to the cloud. Furthermore, modifying the endpoints
and responses of the APIs represents another potential at-
tack scenario. In both cases, the cloud attacker would need
to alter the application, which is not possible due to the
attestation verification enforced by TAPShield. Addition-
ally, the application is encrypted during execution using
Intel SGX cryptographic functions (encrypted mounting),
hence the cloud is not permitted to read enclave memory.

Python Executor injects the Python script using the
Template node and then executes it on the target machine
using the WriteFile and Exec nodes. One potential attack
involves altering the script to redirect user data to a
specific attacker endpoint, which is not allowed due to
the attestation process. Secondly, any additional file used
by the script is mounted using the encryption, which
protects against the leakage of sensitive information from
the application to the cloud.

Uploader is an interface that enables the user to upload
a file to a specific endpoint. This flow consists of a set

of Template and Network nodes designed to provide the
user interface and handle upload requests. One potential
scenario in a compromised cloud involves either reading
the uploaded file or altering the flow to send the file to an
attacker’s endpoint.

Calendar Bot flow use telegrambot library to create
a calendar bot capable of communicating with users via
Telegram. In order to deploy this flow in the cloud we use
BotFather telegram bot which is a manager bot. Given
that the flow communicates with the Telegram bot using a
key, one potential attack is the leakage of this key which
is protected by application encryption. Furthermore, the
compromised cloud could manipulate the Chat-ID and
Bot configuration to redirect the user’s conversation to a
different, specified bot which causes different expected
Measurement in the attestation verification step.

Google Sheet Controller enables a user to retrieve
Google Sheet records or write JSON data to the sheet
using spreadsheet and authentication community
nodes. To authenticate with Google, it is necessary
to inject a Service Account Key, which is sensitive
information. If this key is leaked, it grants access to
authorized files through Google APIs. We protect against
this attack through encrypted mounting of the application
containing the node libraries. Another potential scenario
is the modification of Google Sheet data by altering
the application, which is prevented by the Attester
verification.

SMS Message Sender flow aims to provide a service
for each user to send a specific text message to a phone
number using Vonage service APIs. This service offers a
collection of endpoints that allow users to both receive and
send text messages. We use a free subscription of this ser-
vice to evaluate the functionalities of this flow. Exposing
the API keys in this instance could result in users being
billed for additional expenses, which is mitigated through
application encryption. Furthermore, any modification of
the text message would cause the verification to fail during
the attestation process.

Email Norifier is a Node-RED flow designed to pro-
vide notifications whenever a user receives a new email in
a specific mailbox. We re-implemented the same flow in
Node-RED using node-red-contrib-email-out nodes.
node-red-contrib-email-out uses email credentials to
trigger the flow. As a result, the deployed application
includes credentials that are sensitive to the user and are
decrypted during the key provisioning step. Furthermore,
if the cloud is compromised, it could allow attackers to
read the user’s new emails if the application is executed
in an insecure execution environment.

Object Detection flow aims to de-
tect different types of objects using the
node-red-contrib-model-asset-exchange library,
which contains nodes for deep learning microservices
from Model Asset Exchange. This library supports a
wide variety of application domains in deep learning,
such as object detectors, image segmenters, and even
audio classifiers. The flow is triggered by an image input
and passes the image to the service with appropriate
hyperparameters to execute the algorithm. In an
insecure execution environment, the cloud could alter
hyperparameters, manipulate the final detection results,

https://www.ansible.com/
https://www.jenkins.io/
https://flows.nodered.org/flow/38ade4a188adb6dccb1d6d3de5ff6a77
https://flows.nodered.org/flow/1038d5f81f153a34f23d6e8e8ca34ae4
https://flows.nodered.org/flow/0a6e073bcd6bda364fafd32699837cc7
https://flows.nodered.org/flow/c70d0b4c54b583cf30c7e989b74feb68
https://flows.nodered.org/flow/1fa8748f5951ecc354ce2eeb00c467743
https://flows.nodered.org/flow/a36ccbcfc43c264cda892383fe034fe3
https://flows.nodered.org/flow/0d452314094ebb09e4c518cc749f7278
https://ifttt.com/applets/hsWqGc5i-mail
https://developer.ibm.com/
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Figure 7. Performance evaluation of core nodes

or even supply a modified image to the algorithm.
Todoist flow is the third flow that we implement

in Node-RED. The node-red-contrib-todoist-api li-
brary in the Node-RED community enables communica-
tion with the Todoist application using its REST APIs.
We need to pass multiple pieces of data, such as API
keys and task-IDs, to the flow, and leakage of this data
could be dangerous. Furthermore, running the flow in an
insecure environment could alter the application’s func-
tionality—such as deleting all tasks—which we protect
against through attestation.

Appendix C.
RQ2: Performance Evaluation

Figure 7 shows the average execution time of each
node for Node-RED.

Appendix D.
RQ3: Compatibility

TABLE 5. EVALUATION ON 50 IFTTT APPS IN 4 EXECUTION
MODES

Environment Execution Time (ms)
Node.js 0.15

TAPShield 1.32
TAPShield & vm2 45.85

TAPShield & SandTrap (Learning OFF) 36.57

In the following, we present the most dependent-
upon Node-RED flows used in TAPShield evaluation. It
is important to note that each application is specified with
a name and is illustrated with this name in Figures 8 and
9. In addition, Table 6 illustrate the IFTTT filter codes for
compatibility evaluation.

MURL: Monitoring URL is a web-based
application used to monitor different endpoints
and their accessibility via a user interface. After
running the application, users can access it at
https://ServerAddress:8443/api/home and begin
adding various endpoints. Furthermore, through the
application, users can configure different requests and
specify the Request-Header and Status-Code. The
application offers a user-friendly interface that enables
users to schedule requests according to their needs using
CronJob. Altogether, the flow developer utilized 206
nodes from 23 distinct node types in Node-RED.
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Figure 8. Performance evaluation of most dependent upon Flows
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Figure 9. Average memory consumption of Node-RED flows

NRG: Node-RED Gateway (NRG) is a Node-RED web
server that allows users to serve static and dynamic web
pages using Node-RED. NRG employs the Model-View-
Controller (MVC) architectural pattern to facilitate the
delivery of logic files in the .NRG format within a user
interface, which includes built-in support for HTML and
CSS. The NRG web server provides support for server
error handling, logical action declaration, and server-side
scripting, aiming to offer users functionalities similar to
those of a traditional web server. NRG contains a total of
65 nodes, including 15 distinct node types. One important
aspect of this flow is reading the web server configuration
from pre-defined files, which introduces additional over-
head when running inside the enclave.

OPCXML: OPCXML Client is an application that
requests data from an OPCXML server. OPC (OLE for
Process Control) is a set of standards for connecting
industrial automation and control systems. OPCXML is
a part of the OPC feature set and is designed for ex-
changing data between OPC-compliant systems using XML
(eXtensible Markup Language). The OPCXML Client flow
supports various data processing actions such as Browse,
GetProperties, GetStatus, and Subscribe. To imple-
ment this flow, the developer used the SubFlow feature
of Node-RED, which handles different requests using 74
nodes categorized into 15 types. Ultimately, users are able
to write the request responses and read them from their
own directory.

WSS: Weather Status Service using MQTT Broker
is a flow implemented in Node-RED that provides a
message broker for sharing weather status information.
By using Node-RED user interface nodes, the flow
offers a dashboard that displays weather status using

https://ifttt.com/applets/PBpiVdaw-get-the-daily-forecast-in-telegram
https://flows.nodered.org/flow/1161d0c466c977dbe89aea25fa7855bd
https://flows.nodered.org/flow/3c3537747798ecfe3f16a9b82e1bd58c
https://flows.nodered.org/flow/2bc0e1c2f8a768db01441f6b58273d92
https://flows.nodered.org/flow/06741a3ebd9aca30dd8534d55987d501


TABLE 6. IFTTT APPS FOR COMPATIBILITY EVALUATION

IFTTT Filter Code Specification Trigger Service Action Service
Close Garage Door via Google Assistant Close MyQ garage door with Google Assistant voice command Google Assistant V2 MyQ Devices

Close Garage Door via Siri Close MyQ garage door using iOS Shortcuts iOS Shortcuts MyQ Devices
Automatically Arm Blink System When Leaving Home Arm Blink security system upon exiting a location Location Blink

Liked YouTube Songs to Spotify Playlist Add liked YouTube video songs to a Spotify playlist YouTube Spotify
Sync Evernote and Todoist Tasks Create Todoist tasks from Evernote notes Trigger Todoist, Evernote

Track Work Hours with Button Press Log button presses as work hours in Google Sheets Do Button Google Sheets
Quick Note to iOS Reminders Save a quick note to iOS Reminders with a priority Do Note iOS Reminders

Generate a Draft Blog Post Create a draft Google Doc for blog ideas from Do Note Do Note Google Docs
Save NASA Image to iOS Reading List Save NASA’s image of the day to the iOS Reading List Space iOS Reading List
Upload Camera Photos to Google Drive Automatically upload photos taken with Do Camera to Google Drive Do Camera Google Drive

RSS to Weebly Publish a blog post on Weebly from RSS feeds Feed Weebly
RSS Feeds to Nimbus Note Add RSS feed entries as notes in Nimbus Feed Nimbus Note

RSS to Trello Create Trello cards from RSS feed items Feed Trello
RSS to Evernote Create Evernote notes with RSS feed links Feed Evernote
RSS to Toodledo Create Toodledo tasks from RSS feeds Feed Toodledo

Rain Tomorrow? Get a Notification Receive a mobile notification if rain is forecasted Weather IfNotifications
Call Ends? Show Caller’s Location Show the caller’s location when a call ends Android Phone Android Device
NASA Image as Android Wallpaper Set NASA’s daily image as Android wallpaper Space Android Device
Save Liked Songs to Spotify Playlist Add newly liked Spotify songs to a playlist Spotify Spotify

Start Roomba Cleaning When Leaving Home Start an iRobot Roomba when exiting a region Location iRobot
Tweet Instagram Photos as Native Twitter Images Post an Instagram photo as a tweet with an image Instagram Twitter

Sync iOS Contacts to Google Spreadsheet Append new iOS contacts to a Google Sheet IosContacts GoogleSheets
Save Tagged Facebook Photos to Dropbox Save Facebook-tagged photos to a Dropbox folder Facebook Dropbox

Backup Tagged Facebook Photos to iOS Photos Album Save tagged Facebook photos to an iOS Photos album Facebook IosPhotos
Track Work Hours in Google Calendar Log office entry/exit times in Google Calendar Location GoogleCalendar

Track Work Hours in Google Drive with Button Press Log button press events to Google Sheets DoButton GoogleSheets
Upload Instagram Photos to Facebook Page Album Upload new Instagram photos to a Facebook page album Instagram FacebookPages

Log Time Spent at Locations in a Spreadsheet Record time spent at specific locations in Google Sheets Location GoogleSheets
Tweet Facebook Status Updates Post Facebook status updates as tweets Facebook Twitter

Call Phone When Arlo Detects Motion Call phone when Arlo security camera detects motion Arlo PhoneCall
Call Phone When Blink Camera Detects Motion Call phone when Blink security camera detects motion Blink PhoneCall

Receive Intrusion Alerts via SMS Send an SMS alert when intrusion is detected AnywareServices Sms
Post New Instagram Photos to WordPress Create a WordPress post with a new Instagram photo Instagram Wordpress

Dictate a Voice Memo and Email MP3 File Send an email with an MP3 of a dictated voicemail PhoneCall Email
Quickly Email Yourself a Note Send an email with a note written in DoNote DoNote Email

Activate LightwaveRF Socket Based on Time Control a LightwaveRF socket based on the time TS LightwaverfPower
Modify RSS Feed Image Size and Post to Facebook Adjust image size in RSS feed before posting to Facebook Feed FacebookPages
Send Slack and Email Notifications for Trello Cards Notify Slack and Email when a Trello card is added Trello Slack, Email
Change Hue/Nanoleaf Light Color Based on Weather Adjust Hue light colors depending on the weather Weather Hue

Create a Blogger Entry from a Reddit Post Publish top Reddit posts as Blogger entries Reddit Blogger
Calculate Event Duration and Create iOS Calendar Entry Calculate duration of Google Calendar event GoogleCalendar IosCalendar

Notify When All-Day Calendar Event is Added Send a notification when an all-day event is added GoogleCalendar IfNotifications
Send Rich Notification for Gmail Messages Notify about new Gmail messages matching a search query Gmail IfNotifications
Send Google Search Results as Notification Send a Google search result link as a rich notification DoNote IfNotifications

Control Gogogate Door Based on Time Range Close a Gogogate door within a specific time range TriggerService Gogogate
Set Random LIFX Color via Button Press Change LIFX light color randomly on button press DoButton Lifx

Adjust LIFX Light Colors as It Gets Darker Change LIFX light colors based on time of day DateAndTime Lifx
Filter Twitter Deals and Send Email Digest Send daily email digest based on Twitter search results Twitter EmailDigest

Send Daily Motivational Quote and Weekly Digest Notify with a daily quote and send a weekly digest DateAndTime IfNotifications, EmailDigest

OpenWeather APIs. This process involves utilizing dis-
tinct endpoints to communicate with the message broker,
which then transfers data to the user interface. Once the
process is completed, users can access the dashboard
at the https://ServerAddress:8443/api/ui endpoint.
The Weather Status flow comprises 70 nodes, catego-
rized into 12 different types.

IoTc: IoT Devices Controller is an application based
on the Telegram Bot. Using this flow, users are able to
manage their home IoT devices via a Telegram Bot. We
configured the bot with predefined commands and defined
a set of devices such as Light and Switch. The flow offers
an interactive environment for users to manage each IoT
device. As physical connectivity is not directly provided
in this flow, commands are passed to the endpoint, and
the Debug node is used to print them to the user interface.
The flow primarily consists of 53 nodes from 18 different
types.

https://ifttt.com/applets/w9HVuagD-close-your-myq-garage-door-with-your-voice
https://ifttt.com/applets/jwGsdWaM-hey-siri-close-my-garage-door
https://ifttt.com/applets/RWjvrX6m-automatically-arm-your-blink-system-when-you-leave-home
https://ifttt.com/applets/pc6CeRjs-add-songs-from-videos-you-like-to-a-spotify-playlist
https://ifttt.com/applets/wZNtTHJQ-sync-evernote-and-todoist
https://ifttt.com/applets/NAMgXbLj-press-a-button-to-track-work-hours-in-google-drive
https://ifttt.com/applets/dTJuvSmB-quick-note-to-ios-reminder
https://ifttt.com/applets/Wi6uLChB-generate-a-draft-blog-post-for-a-topic
https://ifttt.com/applets/ADTRpPSr-image-of-the-day-from-nasa-ios-reading-list
https://ifttt.com/applets/HVaQjptn-google-drive-camera
https://ifttt.com/applets/LxtLrC3K-rss-to-weebly
https://ifttt.com/applets/Eb2VCh8N-rss-feeds-to-nimbus
https://ifttt.com/applets/kUmTYgCy-rss-to-trello
https://ifttt.com/applets/uWvtmJLa-main-site-rss-to-evernote
https://ifttt.com/applets/e4rwSTdG-rss-to-toodledo
https://ifttt.com/applets/LEbinUvF-rain-tomorrow-get-a-mobile-notification
https://ifttt.com/applets/hJMKghVa-if-someone-calls-show-their-location-when-the-call-ends
https://ifttt.com/applets/yNvHX9VQ-update-your-android-wallpaper-with-nasa-s-image-of-the-day
https://ifttt.com/applets/GW9pSz72-create-a-playlist-of-your-liked-songs
https://ifttt.com/applets/A38TqjpD-when-i-leave-home-start-a-cleaning-job
https://flows.nodered.org/flow/c092bc6bcd4131a59cab52e82afbc7be

